A379616 Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
1, 3, 12, 60, 20, 30, 120, 40, 40, 360, 360, 72, 504, 126, 504, 1512, 1512, 7560, 1512, 7560, 30240, 30240, 30240, 30240, 393120, 393120, 393120, 393120, 393120, 393120, 196560, 28080, 14040, 4680, 9360, 46800, 889200, 889200, 6224400, 6224400, 889200, 1778400
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- V. Sitaramaiah and M. V. Subbarao, Asymptotic formulae for sums of reciprocals of some multiplicative functions, J. Indian Math. Soc., Vol. 57 (1991), pp. 153-167.
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
Programs
-
Mathematica
f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
-
PARI
bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));} list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(denominator(s), ", "))};
Formula
a(n) = denominator(Sum_{k=1..n} 1/A188999(k)).