A379617 Numerators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
1, 2, 11, 43, 53, 4, 37, 103, 23, 65, 71, 337, 2539, 1217, 2539, 7337, 7757, 1501, 7883, 7631, 31469, 30629, 31889, 6277, 84625, 82753, 423593, 82753, 426869, 421409, 216847, 213727, 108911, 11899, 24253, 119081, 2317139, 760853, 773203, 6889667, 7037867, 13946059
Offset: 1
Examples
Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 103/120, 23/24, 65/72, 71/72, 337/360, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
Programs
-
Mathematica
f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
-
PARI
bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));} list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(numerator(s), ", "))};