A379621 Numerators of the partial alternating sums of the reciprocals of the alternating sum of divisors function (A206369).
1, 0, 1, 1, 5, -1, 1, -7, 11, -47, -13, -61, -29, -157, -209, -3139, -5123, -1109, -2887, -3547, -2887, -3679, -3319, -4111, -26137, -30757, -5597, -2071, -277, -343, -1627, -12269, -2269, -625, -391, -1261, -3629, -3937, -1853, -4979, -19223, -21533, -20873, -21797
Offset: 1
Examples
Fractions begin with 1, 0, 1/2, 1/6, 5/12, -1/12, 1/12, -7/60, 11/420, -47/210, -13/105, -61/210, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.14, p. 35.
Programs
-
Mathematica
f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/beta[n], {n, 1, 50}]]]
-
PARI
beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); } list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / beta(k); print1(numerator(s), ", "))};