cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379630 Irregular triangle read by rows in which row n lists the smallest parts of the partitions of n into consecutive parts followed by the conjugate corresponding odd divisors of n in accordance with the theorem of correspondence described in the Comments lines.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 2, 5, 1, 6, 1, 3, 1, 7, 3, 7, 1, 8, 1, 9, 4, 2, 3, 9, 1, 10, 1, 5, 1, 11, 5, 11, 1, 12, 3, 3, 1, 13, 6, 13, 1, 14, 2, 7, 1, 15, 7, 4, 1, 5, 3, 15, 1, 16, 1, 17, 8, 17, 1, 18, 5, 3, 9, 3, 1, 19, 9, 19, 1, 20, 2, 5, 1, 21, 10, 6, 1, 7, 3, 21, 1, 22, 4, 11, 1, 23, 11, 23, 1, 24, 7, 3, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 28 2024

Keywords

Comments

Theorem of correspondence between the partitions of n into k consecutive parts and the odd divisors of n: given a partition of n into k consecutive parts if k is odd then the corresponding odd divisor of n is k, otherwise if k is even then the corresponding odd divisor of n is the sum of any pair of conjugate parts of the partition (for example the sum of the largest part and the smallest part).
Conjecture: the first A001227(n) terms in the n-th row are also the absolute values of the n-th row of A341971.
The last A001227(n) terms in the n-th row are also the mirror of the n-th row of A261697.

Examples

			Triangle begins:
   1,  1;
   2,  1;
   3,  1,  3,  1;
   4,  1;
   5,  2,  5,  1;
   6,  1,  3,  1;
   7,  3,  7,  1;
   8,  1;
   9,  4,  2,  3,  9,  1;
  10,  1,  5,  1;
  11,  5, 11,  1;
  12,  3,  3,  1;
  13,  6, 13,  1;
  14,  2,  7,  1;
  15,  7,  4,  1,  5,  3, 15,  1;
  16,  1;
  17,  8, 17,  1;
  18,  5,  3,  9,  3,  1;
  19,  9, 19,  1;
  20,  2,  5,  1;
  21, 10,  6,  1,  7,  3, 21,  1;
  ...
For n = 21 the partitions of 21 into consecutive parts are [21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1].
On the other hand the odd divisors of 21 are [1, 3, 7, 21].
To determine how these partitions are related to the odd divisors we follow the two rules of the theorem as shown below:
The first partition is [21] and the number of parts is 1 and 1 is odd so the corresponding odd divisor of 21 is 1.
The second partition is [11, 10] and the number of parts is 2 and 2 even so the corresponding odd divisor of 21 is equal to 11 + 10 = 21.
The third partition is [8, 7, 6] and the number of parts is 3 and 3 is odd so the corresponding odd divisor of 21 is 3.
The fourth partition is [6, 5, 4, 3, 2, 1] and the number of parts is 6 and 6 is even so the corresponding odd divisor of 21 is equal to 6 + 1 = 5 + 2 = 4 + 3 = 7.
Summarizing in a table:
  --------------------------------------
              Correspondence
  --------------------------------------
    Partitions of 21              Odd
    into consecutive           divisors
         parts                   of 21
  -------------------         ----------
   [21]   ....................     1
   [11, 10]   ................    21
   [8, 7, 6]  ................     3
   [6, 5, 4, 3, 2, 1]  .......     7
.
Then we can make a table of conjugate correspondence in which the four partitions are arrenged in four columns with the smallest parts at the top as shown below:
  ------------------------------------------
           Conjugate correspondence
  ------------------------------------------
    Partitions of 21              Odd
    into consecutive           divisors
    parts as columns             of 21
  -------------------     ------------------
   21   10    6    1       7    3   21    1
    |   11    7    2       |    |    |    |
    |    |    8    3       |    |    |    |
    |    |    |    4       |    |    |    |
    |    |    |    5       |    |    |    |
    |    |    |    6       |    |    |    |
    |    |    |    |_______|    |    |    |
    |    |    |_________________|    |    |
    |    |___________________________|    |
    |_____________________________________|
.
Then removing all rows except the first row we have a table of conjugate correspondence for smallest parts and odd divisors as shown below:
  -------------------     ------------------
    Smallest parts           Odd divisors
  -------------------     ------------------
   21   10    6    1       7    3   21    1
    |    |    |    |_______|    |    |    |
    |    |    |_________________|    |    |
    |    |___________________________|    |
    |_____________________________________|
.
So the 21st row of the triangle is [21, 10, 6, 1, 7, 3, 21, 1].
.
Illustration of initial terms in an isosceles triangle demonstrating the theorem:
.                                          _ _
                                         _|1|1|_
                                       _|2 _|_ 1|_
                                     _|3  |1|3|  1|_
                                   _|4   _| | |_   1|_
                                 _|5    |2 _|_ 5|    1|_
                               _|6     _| |1|3| |_     1|_
                             _|7      |3  | | |  7|      1|_
                           _|8       _|  _| | |_  |_       1|_
                         _|9        |4  |2 _|_ 3|  9|        1|_
                       _|10        _|   | |1|5| |   |_         1|_
                     _|11         |5   _| | | | |_  11|          1|_
                   _|12          _|   |3  | | |  3|   |_           1|_
                 _|13           |6    |  _| | |_  |   13|            1|_
               _|14            _|    _| |2 _|_ 7| |_    |_             1|_
             _|15             |7    |4  | |1|5| |  3|   15|              1|_
           _|16              _|     |   | | | | |   |     |_               1|_
         _|17               |8     _|  _| | | | |_  |_    17|                1|_
       _|18                _|     |5  |3  | | |  9|  3|     |_                 1|_
     _|19                 |9      |   |  _| | |_  |   |     19|                  1|_
   _|20                  _|      _|   | |2 _|_ 5| |   |_      |_                   1|_
  |21                   |10     |6    | | |1|7| | |    3|     21|                    1|
.
The geometrical structure of the above isosceles triangle is defined in A237593. See also the triangle A286001.
Note that the diagram also can be interpreted as a template which after folding gives a 90 degree pop-up card which has essentially the same structure as the stepped pyramid described in A245092.
.
		

Crossrefs

Column 1 gives A000027.
Right border gives A000012.
The sum of row n equals A286014(n) + A000593(n).
The length of row n is A054844(n) = 2*A001227(n).
The partitions of n into consecutive parts are in the n-th row of A299765. See also A286000 and A286001.
The odd divisors of n are in the n-th row of A182469. See also A261697 and A261699.