A379637 Irregular triangle read by rows: T(n,k) is the sum of the widths of the free polyominoes with n cells and width k, n >= 1, 1 <= k <= ceiling(n/2).
1, 1, 1, 2, 1, 8, 1, 10, 18, 1, 24, 66, 1, 36, 213, 72, 1, 74, 579, 552, 1, 120, 1470, 2644, 365, 1, 234, 3663, 10188, 3845, 1, 400, 9033, 33668, 25945, 1530, 1, 758, 22179, 104656, 129600, 22458, 1, 1338, 54075, 312296, 544170, 192228, 6650, 1, 2500, 131541, 919524, 2041085, 1211736, 117733
Offset: 1
Examples
Triangle begins: 1; 1; 1, 2; 1, 8; 1, 10, 18; 1, 24, 66; 1, 36, 213, 72; 1, 74, 579, 552; 1, 120, 1470, 2644, 365; 1, 234, 3663, 10188, 3845; 1, 400, 9033, 33668, 25945, 1530; 1, 758, 22179, 104656, 129600, 22458; 1, 1338, 54075, 312296, 544170, 192228, 6650; 1, 2500, 131541, 919524, 2041085, 1211736, 117733; ... Illustration for n = 5: The free polyominoes with five cells are also called free pentominoes. For k = 1 there is only one free pentomino of width 1 as shown below, so T(5,1) = 1. _ |_| |_| |_| |_| |_| . For k = 2 there are five free pentominoes of width 2 as shown below, hence the sum of the widths is 2 + 2 + 2 + 2 + 2 = 5*2 = 10, so T(5,2) = 10. _ _ _ |_| _|_| _|_| _ _ _ _ |_| |_|_| |_|_| |_|_| |_|_| |_|_ |_| |_| |_|_| |_|_ |_|_| |_| |_| |_| |_|_| . For k = 3 there are six free pentominoes of width 3 as shown below, hence the sum of the widths is 3 + 3 + 3 + 3 + 3 + 3 = 6*3 = 18, so T(5,3) = 18. _ _ _ _ _ _ _ _ _ _ _|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_| |_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_ |_| |_| |_|_|_| |_|_| |_| |_|_| . Therefore the 5th row of the triangle is [1, 10, 18]. .
Crossrefs
Formula
T(n,k) = k*A379623(n,k).
Comments