A379646 Irregular triangle T(n,k) where row n contains the trajectory of recursive mappings of A001175(x) starting with x = n and ending at fixed point A235249(n).
1, 2, 3, 8, 12, 24, 3, 8, 12, 24, 4, 6, 24, 5, 20, 60, 120, 6, 24, 7, 16, 24, 8, 12, 24, 9, 24, 10, 60, 120, 11, 10, 60, 120, 12, 24, 13, 28, 48, 24, 14, 48, 24, 15, 40, 60, 120, 16, 24, 17, 36, 24, 18, 24, 19, 18, 24, 20, 60, 120, 21, 16, 24, 22, 30, 120, 23, 48, 24
Offset: 1
Examples
Table begins: 1; 2, 3, 8, 12, 24; 3, 8, 12, 24; 4, 6, 24; 5, 20, 60, 120; 6, 24; 7, 16, 24; 8, 12, 24; 9, 24; 10, 60, 120; 11, 10, 60, 120; 12, 24; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10141 (rows n = 1..2500, flattened)
- Brennan Benfield and Oliver Lippard, Fixed points of K-Fibonacci sequences, arXiv:2404.08194 [math.NT], 2024.
- J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica, 16 (1969), 105-110.
- Wikipedia, Pisano period
Programs
-
Mathematica
q[{0, 1, }] := False; q[] := True; f[k_][{a_, b_, c_}] := {Mod[b, k], Mod[a + b, k], c + 1}; s[1] := 1; s[k_] := s[k] = Which[ PrimeQ[k] && k > 5, If[ AnyTrue[PrimitiveRootList[k], Mod[#^2, k] == Mod[# + 1, k] &], k - 1, NestWhile[f[k], {1, 1, 1}, q][[-1]] ], PrimePowerQ[k], NestWhile[f[k], {1, 1, 1}, q][[-1]], True, LCM @@ Map[s[#] &, Power @@@ FactorInteger[k] ] ]; Table[Most@ FixedPointList[s[#] &, n], {n, 24}]
Comments