A379655 Numbers k such that k and k+1 are both possible values of the sum of divisors function (A000203).
3, 6, 7, 12, 13, 14, 30, 31, 38, 39, 56, 62, 90, 120, 126, 127, 132, 182, 194, 216, 255, 306, 307, 363, 380, 398, 399, 402, 464, 510, 511, 548, 552, 740, 780, 846, 847, 854, 920, 930, 960, 961, 992, 1022, 1023, 1092, 1093, 1280, 1407, 1650, 1658, 1722, 1723, 1728
Offset: 1
Examples
3 is a term since 3 = sigma(2) and 3 + 1 = 4 = sigma(3). 6 is a term since 6 = sigma(5) and 6 + 1 = 7 = sigma(4).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems: Inversion of Multiplicative Functions (invphi.gp).
Programs
-
Mathematica
seq[lim_] := Module[{v = Select[Union[DivisorSigma[1, Range[lim]]], # <= lim &]}, v[[Position[Differences[v], 1] // Flatten]]]; seq[2000]
-
PARI
isA002191(n) = invsigmaNum(n) > 0; \\ using Max Alekseyev's invphi.gp list(lim) = my(q1 = isA002191(1), q2); for(k = 2, lim, q2 = isA002191(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);
Comments