cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379688 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - 2*x*exp(x)) ).

Original entry on oeis.org

1, 2, 20, 366, 9992, 365130, 16769292, 929022206, 60323670416, 4494465562770, 378025706776340, 35434198578761862, 3663111561838580568, 414057463231218044186, 50805545997014472821276, 6725525908390393438264590, 955435863749903677193184032, 144987884255349864723586105122
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*(n-k)^k*(2*n-k)!/(k!*(n-k)!))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^(n-k) * (n-k)^k * (2*n-k)!/(k! * (n-k)!).
E.g.f. A(x) satisfies A(x) = 1/( 1 - 2*x*A(x)*exp(x*A(x)) ).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380095.

A379660 Expansion of e.g.f. (1/x) * Series_Reversion( x * (exp(-x) - 3*x) ).

Original entry on oeis.org

1, 4, 63, 1861, 82097, 4850511, 360275791, 32284172215, 3391036374849, 408722465393947, 55615320933323831, 8433939560030789091, 1410592999486776429841, 257966146919938099737511, 51211682886276933924579999, 10968423456294584033965364191, 2521058533839507726700577317889
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^(n-k)*(2*n-k+1)^(k-1)*binomial(2*n-k+1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} 3^(n-k) * (2*n-k+1)^(k-1) * binomial(2*n-k+1,n-k)/k!.

A379687 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(x) * (1 - 2*x*exp(x)) ).

Original entry on oeis.org

1, 1, 11, 158, 3597, 107994, 4082695, 186003166, 9930511577, 608225910290, 42049314628251, 3239451955702038, 275220868466701861, 25565354021529630970, 2577774089234276245391, 280406846696018760511694, 32732658189778781519050161, 4081497882738710247779141922
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*(-k-1)^k*(2*n-k)!/(k!*(n-k)!))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^(n-k) * (-k-1)^k * (2*n-k)!/(k! * (n-k)!).
Showing 1-3 of 3 results.