A379666 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n with product k.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 1, 1
Offset: 1
Examples
Array begins: k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12 ----------------------------------------------- n=0: 1 0 0 0 0 0 0 0 0 0 0 0 n=1: 1 0 0 0 0 0 0 0 0 0 0 0 n=2: 1 1 0 0 0 0 0 0 0 0 0 0 n=3: 1 1 1 0 0 0 0 0 0 0 0 0 n=4: 1 1 1 2 0 0 0 0 0 0 0 0 n=5: 1 1 1 2 1 1 0 0 0 0 0 0 n=6: 1 1 1 2 1 2 0 2 1 0 0 0 n=7: 1 1 1 2 1 2 1 2 1 1 0 2 n=8: 1 1 1 2 1 2 1 3 1 1 0 3 n=9: 1 1 1 2 1 2 1 3 2 1 0 3 n=10: 1 1 1 2 1 2 1 3 2 2 0 3 n=11: 1 1 1 2 1 2 1 3 2 2 1 3 n=12: 1 1 1 2 1 2 1 3 2 2 1 4 For example, the A(9,12) = 3 partitions are: (6,2,1), (4,3,1,1), (3,2,2,1,1). Antidiagonals begin: n+k=1: 1 n+k=2: 0 1 n+k=3: 0 0 1 n+k=4: 0 0 1 1 n+k=5: 0 0 0 1 1 n+k=6: 0 0 0 1 1 1 n+k=7: 0 0 0 0 1 1 1 n+k=8: 0 0 0 0 2 1 1 1 n+k=9: 0 0 0 0 0 2 1 1 1 n+k=10: 0 0 0 0 0 1 2 1 1 1 n+k=11: 0 0 0 0 0 1 1 2 1 1 1 n+k=12: 0 0 0 0 0 0 2 1 2 1 1 1 n+k=13: 0 0 0 0 0 0 0 2 1 2 1 1 1 n+k=14: 0 0 0 0 0 0 2 1 2 1 2 1 1 1 n+k=15: 0 0 0 0 0 0 1 2 1 2 1 2 1 1 1 n+k=16: 0 0 0 0 0 0 0 1 3 1 2 1 2 1 1 1 For example, antidiagonal n+k=10 counts the following partitions: n=5: (5) n=6: (411), (2211) n=7: (31111) n=8: (2111111) n=9: (111111111) so the 10th antidiagonal is: (0,0,0,0,0,1,2,1,1,1).
Crossrefs
Antidiagonal sums are A379667.
Counting and ranking multisets by comparing sum and product:
Programs
-
Mathematica
nn=12; tt=Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *) tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *) Join@@tr (* sequence *)
Comments