A379668 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n into parts > 1 with product k.
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1
Examples
Array begins: k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12 ----------------------------------------------- n=0: 1 0 0 0 0 0 0 0 0 0 0 0 n=1: 0 0 0 0 0 0 0 0 0 0 0 0 n=2: 0 1 0 0 0 0 0 0 0 0 0 0 n=3: 0 0 1 0 0 0 0 0 0 0 0 0 n=4: 0 0 0 2 0 0 0 0 0 0 0 0 n=5: 0 0 0 0 1 1 0 0 0 0 0 0 n=6: 0 0 0 0 0 1 0 2 1 0 0 0 n=7: 0 0 0 0 0 0 1 0 0 1 0 2 n=8: 0 0 0 0 0 0 0 1 0 0 0 1 n=9: 0 0 0 0 0 0 0 0 1 0 0 0 n=10: 0 0 0 0 0 0 0 0 0 1 0 0 n=11: 0 0 0 0 0 0 0 0 0 0 1 0 n=12: 0 0 0 0 0 0 0 0 0 0 0 1 For example, the A(11,48) = 3 partitions are: (4,4,3), (4,3,2,2), (3,2,2,2,2). Antidiagonals begin: n+k=1: 1 n+k=2: 0 0 n+k=3: 0 0 0 n+k=4: 0 0 1 0 n+k=5: 0 0 0 0 0 n+k=6: 0 0 0 1 0 0 n+k=7: 0 0 0 0 0 0 0 n+k=8: 0 0 0 0 2 0 0 0 n+k=9: 0 0 0 0 0 0 0 0 0 n+k=10: 0 0 0 0 0 1 0 0 0 0 n+k=11: 0 0 0 0 0 1 0 0 0 0 0 n+k=12: 0 0 0 0 0 0 1 0 0 0 0 0 n+k=13: 0 0 0 0 0 0 0 0 0 0 0 0 0 n+k=14: 0 0 0 0 0 0 2 1 0 0 0 0 0 0 n+k=15: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 For example, antidiagonal n+k=14 counts the following partitions: n=6: (42), (222) n=7: (7) so the 14th antidiagonal is: (0,0,0,0,0,0,2,1,0,0,0,0,0,0,0).
Crossrefs
Programs
-
Mathematica
nn=15; tt=Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *) tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *) Join@@tr (* sequence *)
Formula
For n <= k we have A(n,k) = A318950(k,n).
Comments