A379669 Number of finite multisets of positive integers > 1 with sum + product = n.
0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 2, 2, 0, 1, 2, 4, 0, 3, 1, 1, 3, 1, 1, 2, 2, 3, 3, 2, 0, 2, 3, 2, 2, 4, 1, 4, 0, 3, 4, 2, 2, 2, 3, 1, 2, 4, 2, 3, 0, 1, 8, 3, 1, 4, 2, 3, 3, 2, 1, 3, 5, 1, 4, 3, 1, 4, 2, 7, 2, 3, 4, 3, 0, 2, 4, 6, 2, 4, 4
Offset: 0
Keywords
Examples
The partition (3,2,2) has sum + product equal to 7 + 12 = 19, so is counted under a(19). The a(n) partitions for n = 4, 8, 14, 24, 59: (2) (4) (7) (12) (9,5) (2,2) (4,2) (4,4) (11,4) (2,2,2) (4,2,2) (14,3) (2,2,2,2) (19,2) (4,4,3) (11,2,2) (4,3,2,2) (3,2,2,2,2)
Crossrefs
Arrays counting multisets by sum and product:
Counting and ranking multisets by comparing sum and product:
A318950 counts factorizations by sum.
Programs
-
Mathematica
Table[Length[Select[Select[Join@@Array[IntegerPartitions,n+1,0],FreeQ[#,1]&],Total[#]+Times@@#==n&]],{n,0,30}]