A379671 Array read by antidiagonals downward where A(n,k) is the number of finite sets of positive integers with sum n and product k.
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
Offset: 1
Examples
Array begins: k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12 ----------------------------------------------- n=0: 1 0 0 0 0 0 0 0 0 0 0 0 n=1: 1 0 0 0 0 0 0 0 0 0 0 0 n=2: 0 1 0 0 0 0 0 0 0 0 0 0 n=3: 0 1 1 0 0 0 0 0 0 0 0 0 n=4: 0 0 1 1 0 0 0 0 0 0 0 0 n=5: 0 0 0 1 1 1 0 0 0 0 0 0 n=6: 0 0 0 0 1 2 0 1 0 0 0 0 n=7: 0 0 0 0 0 1 1 1 0 1 0 1 n=8: 0 0 0 0 0 0 1 1 0 1 0 2 n=9: 0 0 0 0 0 0 0 1 1 0 0 1 n=10: 0 0 0 0 0 0 0 0 1 1 0 0 n=11: 0 0 0 0 0 0 0 0 0 1 1 0 n=12: 0 0 0 0 0 0 0 0 0 0 1 1 The A(8,12) = 2 sets are: {2,6}, {1,3,4}. The A(14,40) = 2 sets are: {4,10}, {1,5,8}. Antidiagonals begin: n+k=1: 1 n+k=2: 0 1 n+k=3: 0 0 0 n+k=4: 0 0 1 0 n+k=5: 0 0 0 1 0 n+k=6: 0 0 0 1 0 0 n+k=7: 0 0 0 0 1 0 0 n+k=8: 0 0 0 0 1 0 0 0 n+k=9: 0 0 0 0 0 1 0 0 0 n+k=10: 0 0 0 0 0 1 0 0 0 0 n+k=11: 0 0 0 0 0 1 1 0 0 0 0 n+k=12: 0 0 0 0 0 0 2 0 0 0 0 0 n+k=13: 0 0 0 0 0 0 0 1 0 0 0 0 0 n+k=14: 0 0 0 0 0 0 1 1 0 0 0 0 0 0 n+k=15: 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 For example, antidiagonal n+k=11 counts the following sets: n=5: {2,3} n=6: {1,5} so the 11th antidiagonal is: (0,0,0,0,0,1,1,0,0,0,0).
Crossrefs
Counting and ranking multisets by comparing sum and product:
Programs
-
Mathematica
nn=12; tt=Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *) tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *) Join@@tr (* sequence *)
Comments