cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379685 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x) * (1 - x*exp(x)) ).

Original entry on oeis.org

1, 3, 30, 551, 15028, 547717, 25068058, 1383323517, 89443699176, 6634682537993, 555501170856934, 51828125728865257, 5332620999430989244, 599894268098223894525, 73253745510185331985842, 9650159930850877102454693, 1364228585624978795929566928, 206008264557747708717576118417
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n-k+2)^k*(2*n-k)!/(k!*(n-k)!))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (3*n-k+2)^k * (2*n-k)!/(k! * (n-k)!).

A379859 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(x) * (1 - x*exp(x))^2 ).

Original entry on oeis.org

1, 1, 9, 110, 2121, 53834, 1720105, 66197578, 2984752113, 154358553986, 9009411908001, 585917934419498, 42018536835853369, 3294423846094650658, 280362373171289449209, 25739124908062020925034, 2535728977438902352557921, 266836955238122741966767874, 29872121613650590137264191665
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*exp(x)*(1-x*exp(x))^2)/x))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-n+k-1)^(n-k)*binomial(2*n+k+1, k)/(n-k)!)/(n+1);

Formula

E.g.f. A(x) satisfies A(x) = exp(-x*A(x))/(1 - x * A(x) * exp(x*A(x)))^2.
a(n) = (n!/(n+1)) * Sum_{k=0..n} (-n+k-1)^(n-k) * binomial(2*n+k+1,k)/(n-k)!.
Showing 1-2 of 2 results.