cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379456 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + x*exp(x)) ).

Original entry on oeis.org

1, 2, 13, 151, 2573, 58221, 1648345, 56138461, 2236816825, 102135829609, 5259937376141, 301678137203433, 19072415186892325, 1317869007328182349, 98818139178323981473, 7991908824553634264101, 693473520767940388417265, 64266613784795934251538513
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*n-k+1)^k*binomial(n+1, n-k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..n} (2*n-k+1)^k * binomial(n+1,n-k)/k!.
E.g.f. A(x) satisfies A(x) = exp(x*A(x)) / ( 1 - x*exp(2*x*A(x)) ). - Seiichi Manyama, Feb 04 2025

A379700 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + 3*x*exp(x)) ).

Original entry on oeis.org

1, 4, 45, 889, 25613, 977271, 46586281, 2669066695, 178800270009, 13720918482235, 1187217400278941, 114379273346497611, 12144899525595998821, 1409261040317551952935, 177436990866294436727409, 24094164269339964351367231, 3510079015962779901366174449, 546103202348225740056486964467
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^(n-k)*(2*n-k+1)^k*binomial(n+1, n-k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..n} 3^(n-k) * (2*n-k+1)^k * binomial(n+1,n-k)/k!.
Showing 1-2 of 2 results.