A379715 The second Jordan totient function applied to the squarefree numbers.
1, 3, 8, 24, 24, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 504, 840, 576, 960, 960, 864, 1152, 1368, 1080, 1344, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 2880, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224, 3456, 5040, 5328, 4104, 5760, 4032
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Mohammadreza Esfandiari, On the Means of Jordan's Totient Function, Bull. Iran. Math. Soc., Vol. 46 (2020), pp. 1753-1765.
- R. Sitaramachandrarao, On an error term of Landau - II, Rocky Mountain J. Math., Vol. 15, No. 2 (1985), pp. 579-588. See p. 581.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; j2 /@ Select[Range[100], SquareFreeQ]
-
PARI
j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));} list(lim) = apply(j2, select(issquarefree, vector(lim, i, i)));
Formula
Sum_{n>=1} 1/a(n) = zeta(2) (A013661) (Sitaramachandrarao, 1985).
In general, Sum_{m squarefree} 1/J_k(m) = zeta(k), for k >= 2, where J_k is the k-th Jordan totient function.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2)^3 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A013661^3 * A330523 = 2.38520727393117206135... . - Amiram Eldar, Jan 03 2025