cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379717 The second Jordan totient function applied to the cubefree numbers.

Original entry on oeis.org

1, 3, 8, 12, 24, 24, 48, 72, 72, 120, 96, 168, 144, 192, 288, 216, 360, 288, 384, 360, 528, 600, 504, 576, 840, 576, 960, 960, 864, 1152, 864, 1368, 1080, 1344, 1680, 1152, 1848, 1440, 1728, 1584, 2208, 2352, 1800, 2304, 2016, 2808, 2880, 2880, 2520, 3480, 2304
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2024

Keywords

Crossrefs

Cf. A002117, A004709, A007434, A013661, A358039 (analogous with J_1 = phi), A379715, A379716, A379718.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := Max[FactorInteger[n][[;;, 2]]] < 3; j2 /@ Select[Range[100], cubeFreeQ]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    iscubefree(n) = if(n == 1, 1, vecmax(factor(n)[, 2]) < 3);
    list(lim) = apply(j2, select(iscubefree, vector(lim, i, i)));

Formula

a(n) = A007434(A004709(n)).
Sum_{n>=1} 1/a(n) = zeta(2) * zeta(4) / zeta(8) = 35 / (2*Pi^2) = 1.77312071374091100026... .
In general, Sum_{m cubefree} 1/J_k(m) = zeta(k) * zeta(2*k) / zeta(4*k), for k >= 2, where J_k is the k-th Jordan totient function.
In general, Sum_{m k-free} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^(2*k)), for k >= 2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3)^3 * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 1.23061243656940899916... . - Amiram Eldar, Jan 03 2025