cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379727 a(1) = 1. For n > 1, a(n) = smallest prime factor of c=2*a(n-1)+1 that is not in {a(1), ..., a(n-1)}; if all prime factors of c are in {a(1), ..., a(n-1)}, then we try the next value of c, which is 2*c+1; and so on.

Original entry on oeis.org

1, 3, 7, 5, 11, 23, 47, 19, 13, 37, 151, 101, 29, 59, 17, 71, 41, 83, 167, 67, 271, 181, 727, 97, 1567, 6271, 113, 227, 911, 1823, 521, 149, 599, 109, 73, 197, 79, 53, 107, 43, 563, 347, 139, 31, 127, 89, 179, 359, 719, 1439, 2879, 443, 887, 7103, 14207, 5683, 421, 281, 1289, 2579, 607, 1621, 499, 1999, 5333, 10667, 251, 503, 733, 163, 131, 263, 211, 3391, 13567, 7753, 1723, 383, 307, 1231, 821, 173, 293
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2024

Keywords

Comments

If we start with a(1) = 2, we get A379652.

Crossrefs

Programs

  • Mathematica
    c[_] := True; j = 1; c[1] = False;
    {j}~Join~Reap[Do[
      m = 2*j + 1;
      While[
        Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]]; !
          IntegerQ[k], m = 2*m + 1]; c[k] = False;
    j = Sow[k], {120}] ][[-1, 1]] (* Michael De Vlieger, Dec 31 2024 *)
  • Python
    from sympy import primefactors
    seq = [1]
    seq_set = set(seq)
    max_seq_len=100
    while len(seq) <= max_seq_len:
        c = seq[-1]
        done = False
        while not done:
            c = 2*c+1
            factors = primefactors(c)
            for factor in factors:
                if factor not in seq_set:
                    seq.append(factor)
                    seq_set.add(factor)
                    done = True
                    break
    print(seq) # Robert C. Lyons, Jan 01 2025