A379734 Number of integer partitions of n into parts > 1 whose product is a multiple of n.
0, 1, 1, 2, 1, 1, 1, 4, 3, 2, 1, 8, 1, 4, 8, 27, 1, 32, 1, 40, 24, 13, 1, 175, 56, 22, 188, 166, 1, 387, 1, 874, 166, 61, 410, 1833, 1, 98, 391, 3028, 1, 2704, 1, 1828, 5893, 239, 1, 16756, 3446, 9742, 1865, 5276, 1, 32927, 8179, 31643, 3840, 814, 1, 82958, 1
Offset: 1
Keywords
Examples
The a(n) partitions for n = 6, 10, 12, 15, 22: (6) (10) (12) (15) (22) (5,3,2) (6,6) (6,5,4) (11,6,5) (5,4,3) (7,5,3) (11,7,4) (6,4,2) (10,3,2) (11,8,3) (4,3,3,2) (5,4,3,3) (11,9,2) (5,3,2,2) (5,5,3,2) (11,4,4,3) (6,2,2,2) (6,5,2,2) (11,5,4,2) (3,3,2,2,2) (5,3,3,2,2) (11,6,3,2) (11,7,2,2) (11,3,3,3,2) (11,4,3,2,2) (11,5,2,2,2) (11,3,2,2,2,2)
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=1, 1, 0), `if`(i<2, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, min(i, n-i), t/igcd(i, t))))) end: a:= n-> `if`(isprime(n), 1, b(n$3)): seq(a(n), n=1..70); # Alois P. Heinz, Jan 07 2025
-
Mathematica
Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Divisible[Times@@#,n]&]],{n,30}]
Comments