A379756 a(n) is the number of subsets of S(n) that sum to A023196(n), where S(n) is the set of the proper divisors (or aliquot parts) of A023196(n).
1, 2, 2, 1, 5, 1, 3, 7, 3, 2, 10, 3, 2, 34, 2, 0, 31, 1, 6, 25, 1, 23, 21, 2, 1, 1, 20, 4, 1, 279, 13, 15, 1, 15, 116, 9, 11, 12, 4, 197, 1, 2, 755, 1, 42, 2, 9, 12, 6, 2, 151, 169, 7, 1, 9, 8, 6, 2190, 1, 516, 1, 6, 121, 130, 1, 6, 119, 1, 469, 4, 446, 1, 4, 6
Offset: 1
Keywords
Examples
a(8) = 7 because exactly the 7 subsets {6, 12, 18}, {3, 6, 9, 18}, {2, 4, 12, 18}, {2, 3, 4, 9, 18}, {2, 3, 4, 6, 9, 12}, {1, 2, 6, 9, 18}, {1, 2, 3, 12, 18} of S(8) = {1, 2, 3, 4, 6, 9, 12, 18} sum to A023196(8) = 36. a(16) = 0 because no subset of S(16) = {1, 2, 5, 7, 10, 14, 35} sums to A023196(16) = 70 (weird number).
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Felix Huber, Maple program to calculate the distinct subsets
Crossrefs
Programs
-
Maple
with(NumberTheory): A023196:=proc(n) local a; option remember; if n=1 then 6 else for a from procname(n-1)+1 do if sigma(a)>=2*a then return a fi od fi; end proc; A379756:=proc(n) local b,d,l; d:=sigma(A023196(n))-2*A023196(n); l:= [select(x->x<=d,Divisors(A023196(n)))[]]; b:= proc(m,i) option remember; `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1)))) end proc; forget(b); b(d,nops(l)) end proc; seq(A379756(n),n=1..74);
Comments