A379761 Beginning with 7, least prime such that concatenation of first n terms and its digit reversal both are primes.
7, 3, 3, 31, 389, 1021, 2243, 1831, 5849, 15361, 9887, 3877, 4157, 919, 22637, 14449, 27617, 80221, 5039, 51043, 14009, 126079, 24443, 68311, 49193, 47059, 13049, 253681, 271409, 221227, 138869, 116953, 146297, 21841, 1211549, 322501, 212633, 281791, 216071, 1901749, 38747, 116437
Offset: 1
Examples
31 is a term because the concatenation of {7,3,3,31} and {13,3,3,7} are respectively 73331 and 13337 which are both prime. 2243 is a term because the concatenation of {7,3,3,31,389,1021,2243} and {3422,1201,983,13,3,3,7} are respectively 7333138910212243 and 3422120198313337 which are both prime.
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..100
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: tcat:= proc(a,b) a*10^(1+ilog10(b))+b end proc: A:= 7: x:= 7: for i from 1 to 50 do p:= 2: do p:= nextprime(p); y:= tcat(x,p); if isprime(y) and isprime(rev(y)) then A:= A,p; x:= y; break fi; od od: A; # after Robert Israel in A113584
-
Mathematica
w={7};Do[k=1;q=Monitor[Parallelize[While[True,If[PrimeQ[FromDigits[Join@@IntegerDigits/@Reverse[IntegerDigits[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]]]]]&&PrimeQ[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]],Break[]];k++];Prime[k]],{i,k}];w=Append[w,q],{i,2,50}];w
-
Python
from itertools import count, islice from gmpy2 import digits, is_prime, mpz, next_prime def agen(): # generator of terms s, r, an = "", "", 7 while True: yield int(an) d = digits(an) s, r, p, sp = s+d, d[::-1]+r, 3, "3" while not is_prime(mpz(s+sp)) or not is_prime(mpz(sp[::-1]+r)): p = next_prime(p) sp = digits(p) an = p print(list(islice(agen(), 40))) # Michael S. Branicky, Jan 02 2025