A380010 Beginning with 7, least prime such that concatenation of the first n terms is prime.
7, 3, 3, 3, 31, 23, 13, 3, 167, 13, 137, 3, 73, 383, 499, 431, 13, 101, 61, 47, 67, 101, 13, 83, 1237, 107, 97, 467, 499, 677, 1423, 353, 73, 431, 331, 683, 487, 2141, 3, 1753, 1787, 31, 443, 139, 653, 1327, 17, 919, 173, 2851, 137, 547, 557, 5167, 347, 7867, 839, 19, 179, 19
Offset: 1
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
w={7};Do[k=1;q=Monitor[Parallelize[While[True,If[PrimeQ[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]],Break[]];k++];Prime[k]],k];w=Append[w,q],{i,2,50}];w
-
Python
from itertools import count, islice from gmpy2 import digits, is_prime, mpz, next_prime def agen(): # generator of terms s, an = "", 7 while True: yield int(an) s += digits(an) p = 3 while not is_prime(mpz(s+digits(p))): p = next_prime(p) an = p print(list(islice(agen(), 50))) # after Michael S. Branicky in A379354
Comments