cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379785 For n >= 2, let b(n) = 1 if A379652(n) is 3 mod 4, 0 if A379652(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.

Original entry on oeis.org

1, 8, 1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 5, 2, 2, 3, 3, 4, 4, 1, 1, 3, 2, 1, 2, 1, 3, 1, 6, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 15, 1, 3, 3, 1, 5, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 4, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 7, 2, 2
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2025

Keywords

Comments

Has the same relationship to A379652 as A379783 does to A379899. See A379783 for further information.

Crossrefs

Programs

  • Mathematica
    nn = 400; c[_] := True; j = 2; q = 0; r = 1;
    Rest@ Reap[Do[m = 2*j + 1;
      While[Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]];
        ! IntegerQ[k], m = 2*m + 1];
      c[k] = False; j = k;
      If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2],
    {n, nn}] ][[-1, 1]] (* Michael De Vlieger, Jan 11 2025 *)