A379785 For n >= 2, let b(n) = 1 if A379652(n) is 3 mod 4, 0 if A379652(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.
1, 8, 1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 5, 2, 2, 3, 3, 4, 4, 1, 1, 3, 2, 1, 2, 1, 3, 1, 6, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 15, 1, 3, 3, 1, 5, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 4, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 7, 2, 2
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 400; c[_] := True; j = 2; q = 0; r = 1; Rest@ Reap[Do[m = 2*j + 1; While[Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]]; ! IntegerQ[k], m = 2*m + 1]; c[k] = False; j = k; If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2], {n, nn}] ][[-1, 1]] (* Michael De Vlieger, Jan 11 2025 *)
Comments