A379832 The second Jordan totient function applied to the exponentially odd numbers.
1, 3, 8, 24, 24, 48, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 384, 504, 648, 840, 576, 960, 768, 960, 864, 1152, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 1944, 2880, 2304, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; expoddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; j2 /@ Select[Range[100], expoddQ]
-
PARI
j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));} isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;} list(lim) = apply(j2, select(isexpodd, vector(lim, i, i)));
Formula
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/(p*(p+1)))^3) = A185197 / A065463^3 = 0.57968779180803379088... .
Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.67479534964539923068...
In general, Sum_{m exponentially odd} 1/J_k(m) = zeta(k) * zeta(2*k) * Product_{p prime} (1 - 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.