cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379832 The second Jordan totient function applied to the exponentially odd numbers.

Original entry on oeis.org

1, 3, 8, 24, 24, 48, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 384, 504, 648, 840, 576, 960, 768, 960, 864, 1152, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 1944, 2880, 2304, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Crossrefs

Cf. A007434, A065463, A185197, A268335, A374456 (analogous with J_1 = phi), A379715, A379716, A379717, A379718, A379833.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; expoddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; j2 /@ Select[Range[100], expoddQ]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(j2, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A007434(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/(p*(p+1)))^3) = A185197 / A065463^3 = 0.57968779180803379088... .
Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.67479534964539923068...
In general, Sum_{m exponentially odd} 1/J_k(m) = zeta(k) * zeta(2*k) * Product_{p prime} (1 - 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.