cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379833 The second Jordan totient function applied to the squares.

Original entry on oeis.org

1, 12, 72, 192, 600, 864, 2352, 3072, 5832, 7200, 14520, 13824, 28392, 28224, 43200, 49152, 83232, 69984, 129960, 115200, 169344, 174240, 279312, 221184, 375000, 340704, 472392, 451584, 706440, 518400, 922560, 786432, 1045440, 998784, 1411200, 1119744, 1872792
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Crossrefs

Cf. A000290, A002117, A002618 (analogous with J_1 = phi), A007434, A379715, A379716, A379717, A379718, A379832.

Programs

  • Maple
    a:= n-> mul((i[1]^2-1)*i[1]^(4*i[2]-2), i=ifactors(n)[2]):
    seq(a(n), n=1..37);  # Alois P. Heinz, Jan 03 2025
  • Mathematica
    f[p_, e_] := (p^2 - 1) * p^(4*e - 2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(4*f[i,2] - 2));}

Formula

a(n) = J_2(n^2) = A007434(A000290(n)).
Multiplicative with a(p^e) = (p^2-1) * p^(4*e-2).
Dirichlet g.f.: zeta(s-4)/zeta(s-2).
In general, Dirichlet g.f. of J_k(n^m): zeta(s-m*k)/zeta(s-m*k+k), where J_k is the k-th Jordan totient function.
Sum_{i=1..n} a(i) ~ n^5 / (5*zeta(3)).
In general, Sum_{i=1..n} J_k(i^m) ~ n^(k*m+1) / ((k*m+1)*zeta(k+1)) for k,m >= 1.
Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^2 + 1/p^6) = 1.10666099915727116962...
In general, Sum_{n>=1} 1/J_k(n^m) = zeta(k) * zeta(k*m) * Product_{p prime} (1 - 1/p^k + 1/p^(k*m+k)), for k,m >= 2, and zeta(2) * zeta(m) * Product_{p prime} (1 - 1/p^2 + 1/p^(m+1) + 1/p^(m+2)) for k = 1 and m >= 2.