cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379456 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + x*exp(x)) ).

Original entry on oeis.org

1, 2, 13, 151, 2573, 58221, 1648345, 56138461, 2236816825, 102135829609, 5259937376141, 301678137203433, 19072415186892325, 1317869007328182349, 98818139178323981473, 7991908824553634264101, 693473520767940388417265, 64266613784795934251538513
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*n-k+1)^k*binomial(n+1, n-k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..n} (2*n-k+1)^k * binomial(n+1,n-k)/k!.
E.g.f. A(x) satisfies A(x) = exp(x*A(x)) / ( 1 - x*exp(2*x*A(x)) ). - Seiichi Manyama, Feb 04 2025

A379847 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + x*exp(3*x)) ).

Original entry on oeis.org

1, 2, 17, 259, 5773, 171021, 6342937, 283094309, 14785425081, 885090944809, 59765476266061, 4494836808752049, 372655043070926821, 33769844474642217293, 3320996349535681398849, 352267766021524028011981, 40091829710459334010532593, 4873329774181782935197522641
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (4*n-3*k+1)^k*binomial(n+1, n-k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..n} (4*n-3*k+1)^k * binomial(n+1,n-k)/k!.
E.g.f. A(x) satisfies A(x) = exp(x*A(x)) / ( 1 - x*exp(4*x*A(x)) ). - Seiichi Manyama, Feb 04 2025
Showing 1-2 of 2 results.