A379852 a(n) = floor(8*n^3/27).
0, 0, 2, 8, 18, 37, 64, 101, 151, 216, 296, 394, 512, 650, 813, 1000, 1213, 1455, 1728, 2032, 2370, 2744, 3154, 3605, 4096, 4629, 5207, 5832, 6504, 7226, 8000, 8826, 9709, 10648, 11645, 12703, 13824, 15008, 16258, 17576, 18962, 20421, 21952, 23557, 25239
Offset: 0
Examples
If n = 2, the largest triangle that can be inscribed in the region bounded by the parabola y = x^2, the x-axis, and the line x = n is the right triangle with vertices (2/3,0),(2,0) and (2,32/9), whose area is 64/27. Since floor(64/27) = 2, it follows that a(2) = 2.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,1,-3,3,-1).
Programs
-
Mathematica
Floor[8/27*Range[0, 50]^3] (* Paolo Xausa, Jan 30 2025 *)
Formula
a(n) = floor(A016743(n)/27).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-9) - 3*a(n-10) + 3*a(n-11) - a(n-12) for n >= 12. - Pontus von Brömssen, Jan 14 2025
Comments