cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379858 E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^3) + x.

Original entry on oeis.org

1, 0, 1, -10, 157, -3136, 77509, -2288896, 78824953, -3105906688, 137925180361, -6818997285376, 371578940493589, -22130352562929664, 1430368670554859533, -99722125119137591296, 7459992570265962997489, -596072767690463855509504, 50666927756525446827810961
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (-3*n+4*k-1)^(n-k)*binomial(3*n-3*k+1, k)/((3*n-3*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} (-3*n+4*k-1)^(n-k) * binomial(3*n-3*k+1,k)/( (3*n-3*k+1)*(n-k)! ).

A379909 E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^2) + x*A(x).

Original entry on oeis.org

1, 0, 1, -4, 41, -456, 6817, -120044, 2497105, -59445136, 1599030881, -47923901268, 1584315183673, -57269439049304, 2247345360390145, -95147690776024636, 4323183446836151201, -209835113176652954400, 10835768876261196612673, -593183387438256595660964
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = -n!*sum(k=0, n, (-2*n+2*k-1)^(n-k-1)*binomial(2*n-k, k)/(n-k)!);

Formula

a(n) = -n! * Sum_{k=0..n} (-2*n+2*k-1)^(n-k-1) * binomial(2*n-k,k)/(n-k)!.
Showing 1-2 of 2 results.