cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379865 Number of base 10 digits of 2^(p-1)*(2^p-1) where p = prime(n).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 10, 12, 14, 18, 19, 22, 25, 26, 28, 32, 36, 37, 41, 43, 44, 48, 50, 54, 59, 61, 62, 65, 66, 68, 77, 79, 83, 84, 90, 91, 95, 98, 101, 104, 108, 109, 115, 116, 119, 120, 127, 134, 137, 138, 140, 144, 145, 151, 155, 159, 162, 163, 167, 169, 171, 177
Offset: 1

Views

Author

DarĂ­o Clavijo, Jan 04 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A379865[n_] := IntegerLength[2^(# - 1)*(2^# - 1)] & [Prime[n]];
    Array[A379865, 100] (* Paolo Xausa, Jan 08 2025 *)
  • Python
    from sympy import prime
    def a(n):
      p = prime(n)
      return len(str((1 << (p-1)) * ((1 << p) - 1)))
    print([a(n) for n in range(1,63)])

Formula

a(n) = A055642(A060286(n)).