cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379937 E.g.f. A(x) satisfies A(x) = ( exp(-x*A(x)^(1/2)) + x*A(x) )^2.

Original entry on oeis.org

1, 0, 2, 4, 48, 328, 4240, 52092, 842240, 14598352, 294741504, 6501719860, 159434125312, 4248764847000, 123112522876928, 3840463241458732, 128576024097914880, 4594095412384753312, 174592522399006720000, 7030376888543624506212, 299062278252922180468736
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(1-x)*exp(x))/x)^2))
    
  • PARI
    a(n) = -2*n!*sum(k=0, n, (-n-2)^(n-k-1)*binomial(n+k+1, k)/(n-k)!);

Formula

E.g.f.: ( (1/x) * Series_Reversion( x*(1-x)*exp(x) ) )^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377859.
a(n) = -2 * n! * Sum_{k=0..n} (-n-2)^(n-k-1) * binomial(n+k+1,k)/(n-k)!.

A379932 E.g.f. A(x) satisfies A(x) = ( exp(-x) + x*A(x) )^2.

Original entry on oeis.org

1, 0, 2, 10, 88, 978, 13468, 221338, 4233584, 92458018, 2271283684, 62012911530, 1863436238728, 61124896911154, 2173660174175228, 83304031307483962, 3423089366607304672, 150143469737701318722, 7001969736087834197716, 345972733119776006045386
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(4*exp(-2*x)/(1+sqrt(1-4*x*exp(-x)))^2))
    
  • PARI
    a(n) = -2*n!*sum(k=0, n, (-k-2)^(n-k-1)*binomial(2*k+1, k)/(n-k)!);

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A379879.
a(n) = -2 * n! * Sum_{k=0..n} (-k-2)^(n-k-1) * binomial(2*k+1,k)/(n-k)!.
Showing 1-2 of 2 results.