A379869 a(n) is the least number whose cube is an n-digit cube which has the maximum sum of digits (A373727(n)).
2, 4, 9, 19, 31, 92, 157, 423, 927, 1966, 4289, 8782, 12599, 30355, 99829, 215083, 341075, 989353, 2131842, 4081435, 8334082, 20632999, 43967926, 88316866, 190349299, 364929616, 735501679, 1948602829, 3036548692, 9654499999, 17087193298, 31037622999, 99594689449, 181610950229, 426932901019, 956829383603
Offset: 1
Examples
For n=7, the maximum sum of digits for a 7-digit cube is A373727(7) = 46 and this is attained by 3 cubes, the smallest of which is 157^3 = 3869893 so that a(7) = 157.
Programs
-
C
/* See A373727. */
-
Mathematica
Table[t =SortBy[Map[{#, Total@IntegerDigits[#^3]} &, Range[Ceiling@CubeRoot[10^(n - 1)], CubeRoot[10^n - 1]]], Last]; Select[t, #[[2]] == t[[-1]][[2]] &][[1, 1]], {n, 18}]
Extensions
a(26) and a(35) corrected by Kevin Ryde, Apr 03 2025