cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379867 E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^2) - x*A(x)^2).

Original entry on oeis.org

1, 2, 23, 529, 18589, 884281, 53195407, 3874595089, 331580316473, 32614443047521, 3625839880813171, 449629404853604185, 61535275741655857621, 9213155228282408405185, 1498018121369750569371959, 262869047482982449625840161, 49515850496472530668242845041
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (3*n-k+1)^(k-1)*binomial(3*n-k+1, n-k)/k!);

Formula

E.g.f.: sqrt( (1/x) * Series_Reversion( x * (exp(-x) - x)^2 ) ).
a(n) = n! * Sum_{k=0..n} (3*n-k+1)^(k-1) * binomial(3*n-k+1,n-k)/k!.

A379897 E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^3) - x).

Original entry on oeis.org

1, 2, 19, 388, 12273, 528216, 28824811, 1907463440, 148449329825, 13287501321472, 1344889039128291, 151888157696186880, 18936317798871433681, 2583256803370493809664, 382764484828432552194875, 61215815097927618654693376, 10510472883169375744953509697, 1928296235410784800904193638400
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+2*k+1)^(k-1)*binomial(n+2*k+1,n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+2*k+1)^(k-1) * binomial(n+2*k+1,n-k)/k!.

A379912 E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^3) - x*A(x)).

Original entry on oeis.org

1, 2, 23, 541, 19585, 962901, 59969227, 4526706661, 401724516641, 40994441922169, 4729721311570411, 608827327842480825, 86507217246635276065, 13448830748996370988885, 2270847762050485928361227, 413849998079530364443224781, 80967576778854924208520130241
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*n+k+1)^(k-1)*binomial(2*n+k+1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (2*n+k+1)^(k-1) * binomial(2*n+k+1,n-k)/k!.
Showing 1-3 of 3 results.