A379872 Numbers k that are the product of the lower half of their nontrivial divisors.
1, 24, 30, 40, 56, 64, 70, 105, 135, 154, 165, 182, 189, 195, 231, 273, 286, 297, 351, 357, 374, 385, 399, 418, 429, 442, 455, 459, 494, 513, 561, 595, 598, 621, 627, 646, 663, 665, 715, 729, 741, 759, 782, 805, 874, 875, 897, 935, 957, 969, 986, 1001, 1015, 1023, 1045, 1054, 1085
Offset: 1
Keywords
Examples
24 is a term because the nontrivial divisors of 24 are 2,3,4,6,8,12, and 24=2*3*4. 30 is a term because the nontrivial divisors of 30 are 2,3,5,6,10,15, and 30=2*3*5. 135 is a term because the nontrivial divisors of 135 are 3,5,9,15,27,45, and 135=3*5*9. 729 is a term because the nontrivial divisors of 729 are 3,9,27,81,243, and 729=3*9*27.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Tom Gadron, Java Program
Crossrefs
Cf. A072499.
Programs
-
Java
\\ See Gadron link.
-
Maple
isA379872 := proc(n) local d; numtheory[divisors](n) minus {1,n} ; d := sort(convert(%,set)) ; mul( op(i,d),i=1..floor((nops(d)+1)/2)) ; if % = n then true; else false; end if; end proc: A379872 := proc(n) option remember ; if n =1 then 1; else for a from procname(n-1)+1 do if isA379872(a) then return a; end if; end do: end if; end proc: seq(A379872(n),n=1..60) ; # R. J. Mathar, Jan 29 2025
-
Mathematica
q[k_] := Times @@ Select[Divisors[k], #^2 <= k &] == k; Select[Range[1200], q] (* Amiram Eldar, Jan 05 2025 *)
-
PARI
isok(k) = my(d=divisors(k)); d=setminus(d, Set([1,k])); vecprod(Vec(d, #d\2 + #d%2)) == k; \\ Michel Marcus, Jan 05 2025
Comments