cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381998 E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^2.

Original entry on oeis.org

1, 1, 8, 90, 1472, 31920, 865152, 28197904, 1075122176, 46976064768, 2315080816640, 127068467480064, 7688296957870080, 508450036968779776, 36490818871396499456, 2824787199565881477120, 234622076533699738861568, 20813348299168251651883008, 1964063064959266899440959488
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*k)^(n-k)*binomial(2*k+1, k)/((2*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} (2*k)^(n-k) * A000108(k)/(n-k)!.
From Vaclav Kotesovec, Mar 22 2025: (Start)
E.g.f.: 2/(1 + sqrt(1 - 4*exp(2*x)*x)).
a(n) ~ sqrt(1 + LambertW(1/2)) * 2^(n + 1/2) * n^(n-1) / (exp(n) * LambertW(1/2)^n). (End)

A379912 E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^3) - x*A(x)).

Original entry on oeis.org

1, 2, 23, 541, 19585, 962901, 59969227, 4526706661, 401724516641, 40994441922169, 4729721311570411, 608827327842480825, 86507217246635276065, 13448830748996370988885, 2270847762050485928361227, 413849998079530364443224781, 80967576778854924208520130241
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*n+k+1)^(k-1)*binomial(2*n+k+1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (2*n+k+1)^(k-1) * binomial(2*n+k+1,n-k)/k!.
Showing 1-2 of 2 results.