cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379893 Triangle read by rows: T(n,k) is the number of standard Young tableaux with shapes in {lambda = (lambda_1,lambda_2,...) | lambda_1-lambda_2=k, lambda_i<=1 for i>=3, |lambda| = n}, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 3, 3, 3, 0, 1, 6, 9, 6, 4, 0, 1, 15, 21, 19, 10, 5, 0, 1, 36, 55, 50, 34, 15, 6, 0, 1, 91, 141, 139, 99, 55, 21, 7, 0, 1, 232, 371, 379, 293, 175, 83, 28, 8, 0, 1, 603, 982, 1043, 847, 551, 286, 119, 36, 9, 0, 1, 1585, 2628, 2872, 2441, 1684, 956, 441, 164, 45, 10, 0, 1
Offset: 0

Views

Author

Xiaomei Chen, Jan 05 2025

Keywords

Examples

			Triangle begins:
  [0]   1;
  [1]   0,   1;
  [2]   1,   0,   1;
  [3]   1,   2,   0,  1;
  [4]   3,   3,   3,  0,  1;
  [5]   6,   9,   6,  4,  0,  1;
  [6]  15,  21,  19, 10,  5,  0, 1;
  [7]  36,  55,  50, 34, 15,  6, 0, 1;
  [8]  91, 141, 139, 99, 55, 21, 7, 0, 1;
  ...
		

Crossrefs

Row sums give A257520.
Column 1 gives A005043.

Programs

  • Sage
    def A379893_triangel(dim):
        M = matrix(ZZ, dim, dim)
        for n in range(dim):
            for k in range(n+1):
                for i in range(math.floor((n-k-1)/2)+1):
                    for j in range(n-k-1-2*i+1):
                        if ((n+k-1-j)%2)==0:
                            M[n,k]=M[n, k]+(2*k+2)/(n+k+1-2*i-j)*binomial(n-2*i-2,j)*binomial(n-2*i-j-1,(n+k-j-1)/2-i)
                M[n,k]=M[n,k]-pow(-1,n+k+1)
        return M

Formula

T(n,k) = (-1)^(n+k) + Sum_{i=0..(n-k-1)/2} Sum_{j=0..n-k-1-2*i, j==n+k-1 (mod 2)} (2*k+2) / (n+k+1-2*i-j) * binomial(n-2*i-2,j) * binomial(n-2*i-j-1,(n+k-j-1)/2-i).
T(n+1,2*k-1) + T(n,2*k-1) = A379838(n+1,k) - A379838(n,k).