A379898 Integers k equal to the sum over A003415(t) mod t, for some steps, starting with t = k and then using the result to feed the next calculation.
6, 24, 38, 42, 62, 96, 98, 146, 152, 162, 168, 171, 248, 384, 392, 584, 608, 648, 672, 684, 992, 1026, 1134, 1202, 1506, 1536, 1568, 1674, 2336, 2432, 2592, 2646, 2688, 2736, 3942, 3968, 4104, 4214, 4374, 4536, 4575, 4617, 4808, 6024, 6144, 6272, 6696, 9344, 9728
Offset: 1
Examples
k = 146 (3 steps): 146' mod 146 = 75; 75' mod 75 = 55; 55' mod 55 = 16 and 75 + 55 + 16 = 146. k = 248 (4 steps): 248' mod 248 = 132; 132' mod 132 = 56; 56' mod 56 = 36; 36' mod 36 = 24 and 132 + 56 + 36 + 24 = 248.
Programs
-
Maple
with(numtheory): P:=proc(q) local a, b, n, v; v:=[]; for n from 1 to q do a:=0; b:=n; while a
Comments