cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379858 E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^3) + x.

Original entry on oeis.org

1, 0, 1, -10, 157, -3136, 77509, -2288896, 78824953, -3105906688, 137925180361, -6818997285376, 371578940493589, -22130352562929664, 1430368670554859533, -99722125119137591296, 7459992570265962997489, -596072767690463855509504, 50666927756525446827810961
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (-3*n+4*k-1)^(n-k)*binomial(3*n-3*k+1, k)/((3*n-3*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} (-3*n+4*k-1)^(n-k) * binomial(3*n-3*k+1,k)/( (3*n-3*k+1)*(n-k)! ).

A379911 E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^3) + x*A(x)^2.

Original entry on oeis.org

1, 0, 1, -4, 53, -656, 11917, -244896, 6080265, -171274240, 5480682041, -195121452032, 7672945614589, -329902678161408, 15405361461450885, -776248476561903616, 41985495698339969681, -2426188309657908936704, 149180887282915274036977, -9725086440331395237937152
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = -n!*sum(k=0, n, (-3*n+2*k-1)^(n-k-1)*binomial(3*n-k, k)/(n-k)!);

Formula

a(n) = -n! * Sum_{k=0..n} (-3*n+2*k-1)^(n-k-1) * binomial(3*n-k,k)/(n-k)!.
Showing 1-2 of 2 results.