A379913 Let M_n be the n X n matrix M_(i,j)=1/(3^i+3^j), then a(n) is the denominator of det(M_n).
6, 432, 145800, 28934010000, 36195844320916875, 8087414520398390420149816875, 14739121497834560950873288612087606246265625, 24111787175394014554749263306909156210251310885835206605812890625, 30311902674167553291682092445492621447523310843996437232420613554400185533411542126171875
Offset: 1
Keywords
Examples
For n = 3, the determinant of the matrix [1/6, 1/12, 1/30; 1/12, 1/18, 1/36; 1/30, 1/36, 1/54] is 1/145800, so a(3) = 145800.
Links
- Robert Israel, Table of n, a(n) for n = 1..20
Crossrefs
Numerators are A069743.
Programs
-
Maple
g:= proc(n) local M; M:= Matrix(n,n,(i,j) -> 1/(3^i+3^j)); denom(LinearAlgebra:-Determinant(M)) end proc: map(g, [$1..10]);
-
PARI
a(n) = denominator(matdet(matrix(n, n, i, j, 1/(3^i+3^j)))); \\ Michel Marcus, Jan 06 2025