cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379915 a(n) is the deficiency of the odd squarefree semiprime A046388(n), divided by 2.

Original entry on oeis.org

3, 5, 9, 11, 11, 15, 19, 17, 23, 21, 29, 31, 27, 35, 29, 35, 35, 43, 47, 39, 41, 53, 45, 59, 55, 59, 51, 65, 57, 59, 71, 79, 65, 83, 79, 89, 69, 83, 89, 71, 95, 91, 77, 107, 81, 109, 107, 103, 87, 119, 95, 115, 131, 125, 99, 119, 101, 139, 105, 143, 107, 137, 131
Offset: 1

Views

Author

Hugo Pfoertner, Jan 06 2025

Keywords

Crossrefs

Programs

  • PARI
    \\ uses function a379915_17 from A379917
    a379915_17(300,2)

Formula

a(n) = (2*A046388(n) - sigma(A046388(n)))/2, where sigma is A000203.
a(n) = A033879(A046388(n))/2.

A379916 a(n) is the deficiency of A046389(n), divided by 2.

Original entry on oeis.org

9, 21, 27, 39, 39, 49, 45, 57, 69, 97, 79, 93, 75, 119, 81, 99, 99, 129, 163, 129, 111, 147, 117, 139, 159, 185, 129, 211, 181, 183, 169, 147, 229, 189, 165, 225, 199, 171, 287, 237, 249, 219, 329, 189, 295, 255, 325, 201, 317, 207, 349, 249, 291, 309, 225, 313
Offset: 1

Views

Author

Hugo Pfoertner, Jan 06 2025

Keywords

Crossrefs

Programs

  • PARI
    \\ uses function a379915_17 from A379917
    a379915_17(1210,3)

Formula

a(n) = (2*A046389(n) - sigma(A046389(n)))/2, where sigma is A000203.
a(n) = A033879(A046389(n))/2.

A379762 Products of 4 distinct prime numbers (or tetraprimes) that are abundant.

Original entry on oeis.org

210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966, 1110, 1122, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1330, 1410, 1430, 1482, 1518, 1554, 1590, 1610, 1722, 1770, 1794, 1806, 1830, 1870, 1914, 1938, 1974, 2002, 2010, 2030, 2046, 2090, 2130, 2170, 2190, 2210, 2226, 2262, 2346, 2370, 2418, 2442, 2470, 2478, 2490, 2530, 2562, 2590, 2622
Offset: 1

Views

Author

Massimo Kofler, Jan 09 2025

Keywords

Comments

This sequence is not 2*{A046389}. 2618 = 2*1309 is not in this sequence, while 1309 is in A046389.
Contains 6*p*q if p and q are distinct primes > 3. The first term not of this form is 770. - Robert Israel, Jan 09 2025
a(43) = 2002 is the only term coprime to 15. - Charles R Greathouse IV, Jan 13 2025

Examples

			210 is a term because 210=2*3*5*7 is the product of four distinct primes and it is smaller than the sum of its proper divisors 366.
1155 is not a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors 1149.
		

Crossrefs

Intersection of A005101 and A046386.

Programs

  • Maple
    filter:= proc(n) local F,t;
       F:= ifactors(n)[2];
       F[..,2] = [1,1,1,1] and mul(t[1]+1, t = F) > 2*n
    end proc:
    select(filter, [seq(i,i=2..3000, 4)]); # Robert Israel, Jan 09 2025
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) > 2]; Select[Range[3000], q] (* Amiram Eldar, Jan 09 2025 *)
  • PARI
    list(lim)=my(v=List(select(k->k<=lim, [1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830]))); forprime(p=5,sqrtint(lim\6), my(t=6*p); forprime(q=p+2,lim\t, listput(v,t*q))); forprime(p=11,lim\70,listput(v,70*p)); Set(v) \\ Charles R Greathouse IV, Jan 13 2025

Formula

a(n) == 2 (mod 4).
a(n) ~ (1/6)*n log n/log log n. - Charles R Greathouse IV, Jan 13 2025
Showing 1-3 of 3 results.