A379920 Number of irreducible conic curves containing 6 points of a cyclic order n-torsion subgroup of an elliptic curve.
1, 2, 7, 13, 36, 67, 113, 196, 312, 455, 693, 984, 1353, 1869, 2508, 3261, 4284, 5478, 6898, 8684, 10780, 13174, 16146, 19516, 23381, 27976, 33201, 39041, 45936, 53601, 62187, 72048, 83028, 95109, 108927, 124068, 140749, 159467, 179998, 202321, 227304, 254380, 283844, 316360
Offset: 9
Keywords
Examples
For n=9, there is a unique irreducible conic that contains 6 points in a cyclic order n torsion subgroup of an elliptic curve, and for n=11 there are 7 such conics.
Links
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025. See pp. 3, 19.
Programs
-
Magma
sq:=[]; for NN in [9..30] do G:=Integers(NN); SG:={q: q in G}; QNT:=Subsets(SG,5); QNT:={q join {-(&+ q)} : q in QNT | not -(&+ q) in q}; TRS:=Subsets(SG,3); TRS:={q : q in TRS|&+q eq 0}; QNT:={q :q in QNT| not #{u : u in TRS| u subset q} ge 1}; Append(~sq,#QNT); end for; sq;
-
PARI
{a(n)=[(n-6)*(n^4-19*n^3+121*n^2-384*n+840),(n-1)*(n-4)*(n-5)*(n-7)*(n-8),(n-2)*(n-4)*(n-8)*(n^2-11*n+25),(n-3)*(n^4-22*n^3+169*n^2-588*n+1200)][gcd(n,6)%6+1]/6!;} \\ David Broadhurst, Jan 17 2025
Formula
G.f.: x^9*(1 + x + 3*x^2 + 2*x^3 + 12*x^4 + 14*x^5 - 3*x^6 - x^7 + 7*x^8)/((1 - x)*(1 - x^2)^2*(1 - x^3)^2*(1 - x^6)) \\ David Broadhurst, Jan 17 2025
Comments