cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379925 Numbers k for which nonnegative integers x and y exist such that x^2 + y^2 = k and x + y is a square.

Original entry on oeis.org

0, 1, 8, 10, 16, 41, 45, 53, 65, 81, 128, 130, 136, 146, 160, 178, 200, 226, 256, 313, 317, 325, 337, 353, 373, 397, 425, 457, 493, 533, 577, 625, 648, 650, 656, 666, 680, 698, 720, 746, 776, 810, 848, 890, 936, 986, 1040, 1098, 1160, 1201, 1205, 1213, 1225, 1226
Offset: 1

Views

Author

Felix Huber, Jan 25 2025

Keywords

Comments

Numbers k for which exists at least one solution to k = x^2 + (z^2 - x)^2 in integers x and z with x >= 0 and z >= sqrt(2*x).
Subsequence of A001481.

Examples

			10 is in the sequence because 10 = 1^2 + 3^2 and 1 + 3 = 2^2.
81 is in the sequence because 81 = 0^2 + 9^2 and 0 + 9 = 3^2.
		

Crossrefs

Programs

  • Maple
    # Calculates the first 10005 terms.
    A379925:=proc(K)
        local i,j,L;
        L:={};
        for i from 0 to floor(sqrt((K+1)^2)/2) do
            for j from 0 to floor(sqrt((K+1)^2/2-i^2)) do
                if issqr(i+j) then
                    L:=L union {i^2+j^2}
                fi
            od
        od;
        return op(L)
    end proc;
    A379925(1737);
  • PARI
    isok(n)=my(x=0, r=0); while(x<=sqrt(n) && r==0, if(issquare(n-x^2) && issquare(x+sqrtint(n-x^2)), r=1); x++); r; \\ Michel Marcus, Feb 10 2025

Formula

k = m^(4*j) is in the sequence for nonnegative integers m and j (not both 0) because x = 0 and z = m^j is a solution to m^(4*j) = x^2 + (z^2 - x)^2.