A379925 Numbers k for which nonnegative integers x and y exist such that x^2 + y^2 = k and x + y is a square.
0, 1, 8, 10, 16, 41, 45, 53, 65, 81, 128, 130, 136, 146, 160, 178, 200, 226, 256, 313, 317, 325, 337, 353, 373, 397, 425, 457, 493, 533, 577, 625, 648, 650, 656, 666, 680, 698, 720, 746, 776, 810, 848, 890, 936, 986, 1040, 1098, 1160, 1201, 1205, 1213, 1225, 1226
Offset: 1
Examples
10 is in the sequence because 10 = 1^2 + 3^2 and 1 + 3 = 2^2. 81 is in the sequence because 81 = 0^2 + 9^2 and 0 + 9 = 3^2.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Wikipedia, Sum of two squares theorem
Crossrefs
Programs
-
Maple
# Calculates the first 10005 terms. A379925:=proc(K) local i,j,L; L:={}; for i from 0 to floor(sqrt((K+1)^2)/2) do for j from 0 to floor(sqrt((K+1)^2/2-i^2)) do if issqr(i+j) then L:=L union {i^2+j^2} fi od od; return op(L) end proc; A379925(1737);
-
PARI
isok(n)=my(x=0, r=0); while(x<=sqrt(n) && r==0, if(issquare(n-x^2) && issquare(x+sqrtint(n-x^2)), r=1); x++); r; \\ Michel Marcus, Feb 10 2025
Formula
k = m^(4*j) is in the sequence for nonnegative integers m and j (not both 0) because x = 0 and z = m^j is a solution to m^(4*j) = x^2 + (z^2 - x)^2.
Comments