cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379933 Expansion of e.g.f. 1/( exp(-x) - x )^2.

Original entry on oeis.org

1, 4, 22, 158, 1408, 15002, 186100, 2634998, 41937136, 741170834, 14402727484, 305225470046, 7005711916840, 173134991854970, 4583675648417044, 129424786945875398, 3882446011526729440, 123304773913531035170, 4133369745467043807340, 145840627118145774415214
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x)^2))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)*(k+2)^(n-k)/(n-k)!);

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A072597.
a(n) = n! * Sum_{k=0..n} (k+1) * (k+2)^(n-k)/(n-k)!.

A379936 E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)^(1/2)) - x )^2.

Original entry on oeis.org

1, 4, 30, 344, 5400, 108492, 2667952, 77811120, 2629399680, 101122817300, 4363964377344, 208925612290056, 10992411683169280, 630611992509716700, 39182624685283891200, 2621745777377998537568, 187969244952968687812608, 14377545994804829244970020
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*exp(-x)/(1+x))/x)^2))
    
  • PARI
    a(n) = 2*n!*sum(k=0, n, (n+2)^(k-1)*binomial(n+2, n-k)/k!);

Formula

E.g.f.: ( (1/x) * Series_Reversion( x*exp(-x)/(1+x) ) )^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A088690.
a(n) = 2 * n! * Sum_{k=0..n} (n+2)^(k-1) * binomial(n+2,n-k)/k!.
Showing 1-2 of 2 results.