A379998 Irregular triangle read by rows: T(n,k) is number of sequences of length k over {0,1,...,n-1} containing no two consecutive blocks with the same average, n >= 1, 0 <= k <= A379914(n).
1, 1, 1, 2, 2, 2, 1, 3, 6, 8, 1, 4, 12, 28, 38, 50, 24, 6, 1, 5, 20, 64, 148, 316, 370, 340, 152, 38, 1, 6, 30, 126, 406, 1142, 2142, 3380, 4022, 3910, 2794, 2048, 988, 496, 234, 82, 14, 10, 4, 2, 1, 7, 42, 216, 898, 3314, 9014, 21760, 41026, 63898, 78204, 87820, 71434, 53984, 34232, 16716, 6400, 2346, 644, 148, 12
Offset: 1
Examples
Triangle begins: 1, 1; 1, 2, 2, 2; 1, 3, 6, 8; 1, 4, 12, 28, 38, 50, 24, 6; 1, 5, 20, 64, 148, 316, 370, 340, 152, 38; ...
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..139 (rows 1..9)
Formula
T(n,0) = 1.
T(n,1) = n.
T(n,2) = n*(n-1) for n >= 2.
T(n,3) = A245996(n-1) for n >= 2.
Empirically: T(n,4) = T(n-1,4) + T(n-2,4) - T(n-5,4) - T(n-6,4) - T(n-7,4) + T(n-8,4) + T(n-9,4) + T(n-10,4) - T(n-13,4) - T(n-14,4) + T(n-15,4) for n >= 19.
Comments