A380008 Numbers t whose binary expansion Sum 2^e_i has exponents e_i which are odious numbers (A000069).
0, 2, 4, 6, 16, 18, 20, 22, 128, 130, 132, 134, 144, 146, 148, 150, 256, 258, 260, 262, 272, 274, 276, 278, 384, 386, 388, 390, 400, 402, 404, 406, 2048, 2050, 2052, 2054, 2064, 2066, 2068, 2070, 2176, 2178, 2180, 2182, 2192, 2194, 2196, 2198, 2304, 2306, 2308, 2310, 2320, 2322, 2324, 2326, 2432, 2434, 2436, 2438, 2448, 2450, 2452, 2454
Offset: 0
Examples
Considering the representation in base 4, For n=11 = 1011_binary, a(11) -> 1021_base4 -> 2012_base4 = 134. For n=12 = 1100_binary, a(12) -> 1200_base4 -> 2100_base4 = 144. Considering all numbers are decomposed in binary, with exponents belonging to odious numbers: 1, 2, 4, 7,... The sequence of terms together with their binary representation begins: n a(n) a(n)_bin 0 0: 0 ~ 0 1 2: 10 ~ 2^1 2 4: 100 ~ 2^2 3 6: 110 ~ 2^2+2^1 4 16: 10000 ~ 2^4 5 18: 10010 ~ 2^4 +2^1 6 20: 10100 ~ 2^4+2^2 7 22: 10110 ~ 2^4+2^2+2^1 8 128: 10000000 ~ 2^7 9 130: 10000010 ~ 2^7 +2^1 10 132: 10000100 ~ 2^7 +2^2 11 134: 10000110 ~ 2^7 +2^2+2^1 12 144: 10010000 ~ 2^7+2^4
Links
- Luis Rato, Plot of an NZ-order curve, containing the integers from 0 to 255.
- Wikipedia, Morton code map, also known as Z-order curve.
Programs
-
PARI
a(n) = { my (v = 0, e); while (n, n -= 2^e = exponent(n); v += 2^(2*e + if (hammingweight(e)%2, 0, 1));); return (v); } \\ Rémy Sigrist, Feb 02 2025
-
PARI
isok(t) = my(b=Vecrev(binary(t))); for (i=1, #b, if (b[i] && !(hammingweight(i-1)%2), return(0))); return(1); \\ Michel Marcus, Feb 10 2025
Comments