A380009 Numbers t whose binary expansion Sum 2^e_i has exponents e_i which are evil numbers (A001969).
0, 1, 8, 9, 32, 33, 40, 41, 64, 65, 72, 73, 96, 97, 104, 105, 512, 513, 520, 521, 544, 545, 552, 553, 576, 577, 584, 585, 608, 609, 616, 617, 1024, 1025, 1032, 1033, 1056, 1057, 1064, 1065, 1088, 1089, 1096, 1097, 1120, 1121, 1128, 1129, 1536, 1537, 1544, 1545, 1568, 1569, 1576, 1577, 1600, 1601, 1608, 1609, 1632, 1633, 1640, 1641
Offset: 0
Examples
For n=11 = 1011_binary, a(11) = 1021_base4 = 41. All numbers are also decomposed in binary, with exponents belonging to evil numbers: 0, 3, 5, 6, ... The sequence of terms begins: n a(n) a(n)_bin 0 0: 0 ~ 0 1 1: 1 ~ 2^0 2 8: 1000 ~ 2^3 3 9: 1001 ~ 2^3+2^0 4 32: 100000 ~ 2^5 5 33: 100001 ~ 2^5 +2^0 6 40: 101000 ~ 2^5+2^3 7 41: 101001 ~ 2^5+2^3+2^0 8 64: 1000000 ~ 2^6 9 65: 1000001 ~ 2^6 +2^0 10 72: 1001000 ~ 2^6 +2^3 11 73: 1001001 ~ 2^6 +2^3+2^0
Links
- Luis Rato, Plot of an NZ-order curve, containing the integers from 0 to 255.
- Wikipedia, Morton code map, also known as Z-order curve.
Programs
-
PARI
isok(k) = my(b=binary(k), v=apply(x->#b-x, Vec(select(x->x, b, 1)))); #v == #select(x->(hammingweight(x)%2==0), v); \\ Michel Marcus, Jan 11 2025
Comments