A380031 Smallest integer of d digits, greater than 1 and not ending in 0, whose constant congruence speed is not yet constant at height d + 2.
5, 807, 81666295807, 81907922943, 161423787862411847003581666295807, 115161423787862411847003581666295807, 45115161423787862411847003581666295807, 44317662666830362972182803640476581907922943, 776138023544317662666830362972182803640476581907922943
Offset: 1
Examples
a(2) = 807 since the corresponding 10-adic solution of y^5 = y is ...61423787862411847003581666295807 where the rightmost digit 5 appears to the left side of a(2) itself, while no smaller numbers with the same feature are achievable by cutting the 10-adic integer ...30362972182803640476581907922943 (also one of the 15 solutions of the fundamental 10-adic equation y^5 = y) in correspondence of its rightmost digit 5.
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
Links
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43—61.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Wikipedia, Tetration.
Crossrefs
Formula
For any n > 1, a(n) corresponds to a cut on the right side of a digit 5 that appears inside one of the two strings (- {5^2^k}_oo - {2^5^k}_oo) := ...96579486665776138023544317662666830362972182803640476581907922943 and (- {5^2^k}_oo + {2^5^k}_oo) := ...84258785712222747129609220545115161423787862411847003581666295807, or even to a cut on the right side of a 5 belonging to rare digit-patterns consisting of juxtaposed 5 and trailing 0's occurring inside ({5^2^k}_oo + {2^5^k}_oo) := ...7196359523418092077057 or ({5^2^k}_oo - {2^5^k}_oo) := ...7588152996418333704193.
Comments