A380032 Number of pairs (d, k/d), d | k, d < k/d, such that gcd(d, k/d) > 1 and d | k/d but rad(k/d) does not divide d, where k is in A126706.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1
Offset: 1
Keywords
Examples
Let s(n) = A126706(n). a(1) = 1 since s(1) = 12 = 2*6. a(2) = 1 since s(2) = 18 = 3*6. a(3) = 1 since s(3) = 20 = 2*10. a(4) = 1 since s(4) = 24 = 2*12. a(6) = 2 since s(6) = 36 = 2*18 = 3*12. a(42) = 3 since s(42) = 144 = 2*72 = 3*48 = 4*36. a(204) = 4 since s(204) = 576 = 2*288 = 3*192 = 4*144 = 8*72. a(257) = 5 since s(257) = 720 = 2*360 = 3*240 = 4*180 = 6*120 = 12*60, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 120; rad[x_] := Times @@ FactorInteger[x][[All, 1]]; s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; Table[k = s[[n]]; Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2] ]] &@ Divisors[k], _?( (m = GCD @@ {##}; And[! MemberQ[{1, #2}, m], m == #1, ! Divisible[#1, rad[#2]] ] ) & @@ # &)], {n, Length[s]}]
Comments