cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380042 E.g.f. A(x) satisfies A(x) = 1/sqrt( 1 - 2*x*exp(x*A(x)^2) ).

Original entry on oeis.org

1, 1, 5, 48, 697, 13640, 336771, 10053778, 352334753, 14183529480, 645073504435, 32715111226886, 1830671281889649, 112049330303532388, 7446824171300128811, 534068807341887943770, 41111698162393482004801, 3381089519620006418116976, 295869084136630532211207843
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(serreverse(x/(1+2*x*exp(x)))/x)))
    
  • PARI
    a(n) = n!*sum(k=0, n, 2^k*k^(n-k)*binomial(n+1/2, k)/(n-k)!)/(2*n+1);

Formula

E.g.f.: sqrt( (1/x) * Series_Reversion(x/(1 + 2*x*exp(x))) ).
a(n) = (n!/(2*n+1)) * Sum_{k=0..n} 2^k * k^(n-k) * binomial(n+1/2,k)/(n-k)!.

A380096 E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*A(x)^3*exp(x*A(x)^3) )^(1/3).

Original entry on oeis.org

1, 1, 12, 289, 10724, 540745, 34551886, 2676439507, 243782162408, 25535467766593, 3024360522754010, 399665508962874451, 58301379215119084012, 9305724270031402836337, 1613262216112899513140630, 301870732625016111841693795, 60639884085040694650040518736
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^k*k^(n-k)*binomial(n+k+1/3, k)/((3*n+3*k+1)*(n-k)!));

Formula

E.g.f.: ( (1/x) * Series_Reversion(x*(1 - 3*x*exp(x))) )^(1/3).
a(n) = n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(n+k+1/3,k)/( (3*n+3*k+1)*(n-k)! ).
a(n) = (n!/(3*n+1)) * Sum_{k=0..n} (-3)^k * k^(n-k) * binomial(-n-1/3,k)/(n-k)!.
Showing 1-2 of 2 results.