cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380050 E.g.f. A(x) satisfies A(x) = sqrt( 1 + 2*x*exp(x)*A(x) ).

Original entry on oeis.org

1, 1, 3, 9, 25, 25, -429, -4151, -8175, 320625, 5241475, 23329801, -705579159, -18521117303, -150119840493, 3366485315145, 138253031778721, 1780881865542625, -28047359274759549, -1854674541474191351, -34985197604145203655, 332608115115937927161
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(asinh(x*exp(x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n, 2^k*k^(n-k)*binomial(k/2+1/2, k)/((k+1)*(n-k)!));

Formula

E.g.f.: exp( arcsinh(x*exp(x)) ).
E.g.f.: x*exp(x) + sqrt(1 + x^2*exp(2*x)).
a(n) = n! * Sum_{k=0..n} 2^k * k^(n-k) * binomial(k/2+1/2,k)/( (k+1)*(n-k)! ).

A380045 E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x)*A(x) )^(1/3).

Original entry on oeis.org

1, 1, 8, 109, 2220, 60585, 2079166, 86098929, 4179685560, 232849349425, 14645304783450, 1026614846280441, 79371261554884036, 6709919722961129337, 615776691767279304822, 60968162469515187248545, 6478143744223567852425456, 735290556968263062361451745, 88790542940636437330983140146
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^k*k^(n-k)*binomial(4*k/3+1/3, k)/((4*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(4*k/3+1/3,k)/( (4*k+1)*(n-k)! ).
Showing 1-2 of 2 results.