A380055
E.g.f. satisfies A(x) = log( 1 + x*cos(A(x)) ).
Original entry on oeis.org
1, -1, -1, 18, -86, -210, 8840, -80080, -266220, 19991520, -274725100, -1006434000, 123657316600, -2328145274000, -8148732243600, 1621702497792000, -39454300872662000, -113331522571488000, 38748502249144766000, -1172806114215446464000, -2126467491228525900000, 1525200888587905488960000
Offset: 1
E.g.f.: A(x) = x - x^2/2! - x^3/3! + 18*x^4/4! - 86*x^5/5! - 210*x^6/6! + 8840*x^7/7! - 80080*x^8/8! - 266220*x^9/9! + 19991520*x^10/10! - 274725100*x^11/11! + ...
where exp(A(x)) = 1 + x*cos(A(x)).
RELATED SERIES.
exp(A(x)) = 1 + x - 3*x^3/3! + 12*x^4/4! + 10*x^5/5! - 660*x^6/6! + 5600*x^7/7! + 8400*x^8/8! - 951660*x^9/9! + 12715200*x^10/10! + ... + A380057(n)*x^n/n! + ...
cos(A(x)) = 1 - x^2/2! + 3*x^3/3! + 2*x^4/4! - 110*x^5/5! + 800*x^6/6! + 1050*x^7/7! - 105740*x^8/8! + 1271520*x^9/9! + ...
(exp(x) - 1)/cos(x) = x + x^2/2! + 4*x^3/3! + 7*x^4/4! + 36*x^5/5! + 91*x^6/6! + 624*x^7/7! + 2087*x^8/8! + ... + A380053(n)*x^n/n! + ...
where A( (exp(x) - 1)/cos(x) ) = x.
SPECIAL VALUES.
A(t) = Pi/10 at t = 0.388102877484829654642911664361938906648...
where t = (exp(Pi/10) - 1) * sqrt(2/5) * sqrt(5 - sqrt(5)).
A(t) = Pi/12 at t = 0.309822824437268302125213263289623021697...
where t = (exp(Pi/12) - 1) * sqrt(2) * (sqrt(3) - 1).
A(t) = Pi/16 at t = 0.221202550489384066264418133743972067830...
where t = (exp(Pi/16) - 1) * 2/sqrt(2 + sqrt(2 + sqrt(2))).
SPECIFIC VALUES.
A(1/3) = 0.27803485275982692914601139870101331536340692581609...
where A(1/3) = log( 1 + (1/3)*cos(A(1/3)) ).
A(1/4) = 0.21838208334344020266585373465948828480095045415275...
where A(1/4) = log( 1 + (1/4)*cos(A(1/4)) ).
A(1/5) = 0.17963608403094093235073066420053332711004361034830...
where A(1/5) = log( 1 + (1/5)*cos(A(1/5)) ).
A(1/6) = 0.15249154388154448186532142316863060968215944337447...
where A(1/6) = log( 1 + (1/6)*cos(A(1/6)) ).
-
{a(n) = my(X = x + x*O(x^n)); n!*polcoef( serreverse( (exp(X) - 1)/cos(X) ), n)}
for(n=1,25,print1(a(n),", "))
A380057
E.g.f. satisfies A(x) = real( 1 + x*A(x)^i ), where i^2 = -1.
Original entry on oeis.org
1, 1, 0, -3, 12, 10, -660, 5600, 8400, -951660, 12715200, 21635900, -4308744000, 80314007800, 115204471200, -44501789202000, 1083368456352000, 782537744170000, -876176569052928000, 26724653123017850000, -10930955906482560000, -29304692085200613900000, 1088420125090964265600000
Offset: 0
E.g.f.: A(x) = 1 + x - 3*x^3/3! + 12*x^4/4! + 10*x^5/5! - 660*x^6/6! + 5600*x^7/7! + 8400*x^8/8! - 951660*x^9/9! + 12715200*x^10/10! + ...
where A(x) = real( 1 + x*A(x)^i ).
RELATED SERIES.
A(x)^i = 1 + i*x + (-1 - i)*x^2/2! + (3 - 2*i)*x^3/3! + (2 + 24*i)*x^4/4! + (-110 - 90*i)*x^5/5! + (800 - 540*i)*x^6/6! + (1050 + 12640*i)*x^7/7! + (-105740 - 85680*i)*x^8/8! + (1271520 - 808480*i)*x^9/9! + ...
L(x) = log(A(x)) = x - x^2/2! - x^3/3! + 18*x^4/4! - 86*x^5/5! - 210*x^6/6! + 8840*x^7/7! - 80080*x^8/8! - 266220*x^9/9! + ... + A380055(n)*x^n/n! + ...
where L( (exp(x) - 1)/cos(x) ) = x.
cos(L(x)) = 1 - x^2/2! + 3*x^3/3! + 2*x^4/4! - 110*x^5/5! + 800*x^6/6! + 1050*x^7/7! - 105740*x^8/8! + 1271520*x^9/9! + ... + (a(n+1)/(n+1))*x^n/n! + ...
where A(x) = 1 + x*cos(L(x)).
sin(L(x)) = x - x^2/2! - 2*x^3/3! + 24*x^4/4! - 90*x^5/5! - 540*x^6/6! + 12640*x^7/7! - 85680*x^8/8! - 808480*x^9/9! + 29636100*x^10/10! + ...
where A(x)^i = cos(L(x)) + i*sin(L(x)).
(exp(x) - 1)/cos(x) = x + x^2/2! + 4*x^3/3! + 7*x^4/4! + 36*x^5/5! + 91*x^6/6! + 624*x^7/7! + 2087*x^8/8! + 18256*x^9/9! + ... + A380053(n)*x^n/n! + ...
where A( (exp(x) - 1)/cos(x) ) = exp(x).
SPECIFIC VALUES.
A(t) = 3/2 at t = 0.544117577471602714300218052469...
where t = (1/2)/real( (3/2)^i ) = (1/2)/cos(log(3/2)).
A(t) = 4/3 at t = 0.347619044845549508650339299345...
where t = (1/3)/cos(log(4/3)).
A(t) = 5/4 at t = 0.256355931938414599112107620645...
where t = (1/4)/cos(log(5/4)).
A(t) = 6/5 at t = 0.203370786475336228292002468204...
where t = (1/5)/cos(log(6/5)).
A(5/9) = 1.509166099041466745516450953830986339123819257989853587...
A(1/2) = 1.464101647089238181480821477030380839753029025795281424...
where A(1/2) = real(1 + (1/2)*A(1/2)^i) = 1 + (1/2)*cos(log( A(1/2) )).
A(1/3) = 1.320532220599397916493026637544832197337142648617761054...
where A(1/3) = 1 + (1/3)*cos(log( A(1/3) )).
A(1/4) = 1.244062312309475342914040842626056476267801020397804125...
where A(1/4) = 1 + (1/4)*cos(log( A(1/4) )).
A(1/5) = 1.196781755871960043253050643301603078428252760913031148...
A(1/6) = 1.164732612936027556202815971272406070730644075186904648...
A(1/10) = 1.099550027586687118480790742605384041459169163472092691...
-
{a(n) = my(A = 1+O(x)); for(i=0, n, A = real( 1 + x*A^I )); n!*polcoef(A, n)}
for(n=0,30, print1(a(n),", "))
A380056
E.g.f. (exp(x) - 1)/cos(2*x).
Original entry on oeis.org
1, 1, 13, 25, 441, 1261, 30213, 115025, 3529201, 16792021, 629401213, 3593565625, 159175688361, 1060279600381, 54189700721013, 412526870321825, 23894940183997921, 204641610743378341, 13248060325188261613, 126065945039257743625, 9020317522757414377881, 94419130586604915837901
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 13*x^3/3! + 25*x^4/4! + 441*x^5/5! + 1261*x^6/6! + 30213*x^7/7! + 115025*x^8/8! + 3529201*x^9/9! + 16792021*x^10/10! + ...
-
{a(n) = my(A,X = x + x*O(x^n)); n!*polcoef( (exp(X) - 1)/cos(2*X), n)}
for(n=1,25,print1(a(n),", "))
Showing 1-3 of 3 results.
Comments