cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380058 G.f. A(x) satisfies: A( A(x)^4 - A(x)^5 ) = x*A(x)^3.

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 111, 345, 1103, 3603, 11971, 40328, 137423, 472829, 1640328, 5731315, 20150376, 71235454, 253061855, 902922756, 3234281950, 11626416055, 41928973015, 151656509670, 550021604731, 1999753822557, 7287331086431, 26612272636168, 97375824946785, 356957982413881
Offset: 1

Views

Author

Paul D. Hanna, Jan 28 2025

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 37*x^6 + 111*x^7 + 345*x^8 + 1103*x^9 + 3603*x^10 + 11971*x^11 + 40328*x^12 + ...
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 87*x^7 + 276*x^8 + 893*x^9 + 2937*x^10 + ...
A(x)^4 = x^4 + 4*x^5 + 14*x^6 + 48*x^7 + 161*x^8 + 540*x^9 + 1822*x^10 + ...
A(x)^5 = x^5 + 5*x^6 + 20*x^7 + 75*x^8 + 270*x^9 + 956*x^10 + 3365*x^11 + ...
A(x)^4 - A(x)^5 = x^4 + 3*x^5 + 9*x^6 + 28*x^7 + 86*x^8 + 270*x^9 + 866*x^10 + 2827*x^11 + 9378*x^12 + 31538*x^13 + 107296*x^14 + 368658*x^15 + ...
where A( A(x)^4 - A(x)^5 ) = x*A(x)^3.
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.2583423319694388182706452995079327548366116827628877452...
  where t = 8*A(1/32).
A(t) = 1/3 at t = 0.22408195158505908910325809814920343873844154937613...
  where t = 27*A(2/243).
A(t) = 1/4 at t = 0.18805255881224948435916264631181129351886165823425...
  where t = 64*A(3/1024).
A(t) = 1/5 at t = 0.16020532597132547687124527971521135474403954761733...
  where t = 125*A(4/3125).
A(t) = 1/10 at t = 0.0900081014583281267833686275811293249657866278004...
  where t = 10^3*A(9/10^5).
A(1/4) = 0.42960492694042135514763101589480330859844466498925...
  where 1/4 = A(u^4 - u^5)/u^3 with u = A(1/4).
A(1/5) = 0.27454979264795630599456455666046730423801890612405...
A(1/6) = 0.21087406049802083294286439329002681040206771579442...
A(1/7) = 0.17251315255186556697304716682023902930740817770490...
A(1/8) = 0.14637731251220491808192059768863203413840265475691...
A(1/32) = 0.0322927914961798522838306624384915943545764603453...
A(2/243) = 0.008299331540187373670491040672192719953275612939...
		

Crossrefs

Programs

  • PARI
    /* From definition A( A(x)^4 - A(x)^5 ) = x*A(x)^3 */
    {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); G=x*Ser(A); A[#A] = -Vec( subst(G, x, G^4 - G^5 )/G^2 )[#A] ); A[n]}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    /* Using Series Reversion of A(x^4 - x^5)/x^3 */
    {a(n) = my(A=x); for(i=1, n, A = serreverse( subst(A, x, x^4 - x^5 +x^4*O(x^n))/x^3) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( A(x)^4 - A(x)^5 ) = x*A(x)^3.
(2) A( A(x^4 - x^5)/x^3 ) = x.
(3) A( x^4*A(x)^12 - x^5*A(x)^15 ) = x^3*A(x)^13 - x^3*A(x)^14.